

AMBR* Engine for Science Missions

NASA In Space Propulsion Technology (ISPT) Program

*Advanced Material Bipropellant Rocket (AMBR)

April 2010

Overview
Objectives
Benefits
Heritage
Results To-Date
Remaining Tasks

NRA High Temperature Bipropellant Thruster (AMBR)

Objective

•Improve the bipropellant engine Isp performance by fully exploiting the benefits of advanced thrust chamber materials

•Goals

- * 335 seconds Isp with NTO/N2H4
- * 1 hour operating (firing) time
- * 200 lbf thrust
- * 3-10 years mission life

Approach

- Adopt operating conditions to allow the thruster to run at higher temperatures and pressures
- Test a baseline engine for model development
- Evaluate materials and fabrication processes
- Develop advanced injector and chamber design
- Fabricate and test a prototype engine
- Environmental testing: life hotfire, vibe, and shock tests

Key Milestones/Upcoming Events

• Kickoff Sept 2006 • Mission and System Analysis TIM Dec • Baseline Testing Feb. 2007 • Risk Mitigation Chamber Testing Nov. • Engine Primary Performance Testing Oct. 2008 • Vibe and Shock Testing Jan. 2009 Additional Performance Testing Feb. 2009 • Long Duration Hotfire Testing June 2009 • Design Model Update and Final Report Sept. 2009

AMBR Thruster within a Bi-Prop Technology Plan

SPACE

Conducted mission and system studies to identify propulsion technology requirements and impacts

AMBR Engine potential mass reduction for the missions

- Results show increased performance can reduce the propellant required to perform spacecraft maneuvers.
- Propellant reduction implies increase of payload

	Total Propulsion System Mass Reduction (Kg)					
Isp (sec)	320	325	330	332.5	335	
GTO to GEO	0	16	30	37	45	
Europa Orbiter	N/A	0	12	16	24	
Mars Orbiter	N/A	0	14	22	29	
T - E Orbiter	N/A	0	29	45	60	

□The AMBR technology is an *improvement* upon the existing HiPATTM engine

□The HiPATTM engine is a member of the *Aerojet Corporation's R-4D Family* of thrusters

□The R-4D family of thrusters carries the heritage: >1000 engines delivered, >650 flown, 100% success rate

Original NRA objective was technology demonstration of both an NTO/Hydrazine and NTO/MMH bipropellant engines

- Fully utilize the advanced material potential of higher operating temperature for increased performance
 - Optimize injector and chamber, shift MR
 - Update procedure and processes for reduced cost production
- Physical "drop-in" for the HiPAT engine
- Performance goals were to push the technology as far as practicable, as a potential stepping stone for a higher pressure thruster (spiral 2)
- □ In 2007, SMD directed the project to close out development activities with potential product at TRL 6.
 - Decision was made to eliminated NTO/MMH engine performance demonstration in favor of more TRL 6 validation activities
 - No expected technology challenges, engine design iteration required for NTO/MMH version
 - Added environmental testing of NTO/Hydrazine engine
 - Added increased duration testing for NTO/Hydrazine engine
 - Lowered pressure to accommodate existing tanks and subsystems to improve nearerterm applicability for New Frontiers and Discovery class missions
 - 200 lbf Thrust goal unachievable at both lower pressure and HiPAT physical envelope

□ In 2009, the AMBR engine became available for transition into full flight development and qualification program for mission infusion.

In-Space Propulsion Technology (ISPT)

Thruster Installed and Performance Tested

- Modify Aerojet's state of the art engine design to fully utilize the high temperature capability of the Ir/Re chamber
 - Optimized injector
 - Optimized chamber/nozzle contour
 - Reduced chamber emissivity
 - Increased thermal resistance between injector and chamber

Change engine operating conditions (within mission constraints), which will produce higher combustion gas temperatures

- Higher feed pressure/lower internal pressure drop
- Higher/optimized mixture ratio

NASA Selection of High Temperature Chamber Materials & Fabrication

- VIN-SPACE PROPULSION

- □ Iridium coated Rhenium (Ir/Re) chamber selected
- ❑ Assessed: Chemical Vapor Deposition (CVD), electroforming (EI-Form[™]), Low Pressure Plasma Spray (LPPS) and Vacuum Plasma Spray (VPS)
- □ CVD is the incumbent process used to fabricate the R-4D-15 HiPAT[™] thrust chambers
- EI-Form has been used to fabricate an Ir/Re chamber for a developmental bipropellant engine by Aerojet with promising result
- □ LPPS and VPS were dropped due to low technical maturity.
- □ Figures of Merit used for the decision matrix were:
 - Producibility
 - □Cost Recurring & nonrecurring
 - □Schedule Recurring & nonrecurring
 - Performance Mechanical properties, thermal, oxidation resistance, & mass
 Heritage/Risk Design & manufacturing
- The EI-Form process was down selected primarily due to the low production cost

AMBR Engine Accomplishments

Designed, fabricated, and tested the first generation AMBR engine

- Design
 - Thermal
 - Structural
- Fabrication
 - Injector
 - EL-Form Ir/Re chamber
- Primary Performance Testing (See next 2 charts)
 - Preliminary results show an lsp of 333 seconds highest lsp ever achieved for the hydrazine/NTO
 - @ Propellant inlet pressure (275 psia) and mixture ratio (1.1) allow for integration with commonly available propulsion system components
- Vibration Testing Completed 12/10/08
 - Post test inspections showed no anomaly
 - Data analysis in progress
 - Used the HiPAT Qualification Level vibration test spectrum
- Shock Testing Completed 01/22/09
 - Post test inspections showed no anomaly
 - Data analysis in progress
 - Referenced the JUNO engine shock SRS
- Additional Performance Testing Completed 02/17/09
 - Primarily at lower mixture ratios
- Long-Duration Hotfire Testing Completed 06/25/09
 At mixture ratio 1.1, thrust 140 lbf, fuel inlet pressure 260 psia
 - At mixture ratio 1.1, thrust 140 lbf, fuel inlet pressure 260 psia (preliminary calculations show lsp 333 sec)

In-Space Propulsion Technology (ISPT)

AMBR a Proven Design for Higher Performance

Design Characteristics	HIPAT DM	AMBR Design	AMBR Test Results 10/1/08	AMBR Test Results 6/25/09	
Trust (lbf) (N2H4/NTO)	100		150	141	
Specific Impulse (sec)	326/329		333.5	333	
Inlet Pressure (psia)	250		275	250	
Chamber Temperature (F)	3100	4000	<u>></u> 3900	3900	
Oxidizer/Fuel Ratio	0.85		1.1	1.1	
Expansion Ratio	300:1 / 375:1	400:1	NRA AMBR DUALMODE		
Engine Mass (Ibm)	11.5 / 12	12			
Physical Envelope					
Length (inch)	24.72 / 28.57	25.97	10/1/08 SEQ TRIM		
Nozzle Exit Dia (in.)	12.8 / 14.25	14.6	← 23.5" (597mm) →		
Propellant Valves	R-4D Valves	R-4D Valves			
The AMBR technology is an in HiPAT™ engineThe HiPAT™ engine is one of the A thrustersThe R-4D family of thrusters carries delivered, >650 flown, 100% success	AMBR Engine Dimens	n 14.6" (371mm) ions			
In-Space Propulsion Technology (ISPT)					

(Primary) Performance Test Summary

48 hot fire runs
 4397 seconds of total burn time
 Propellant consumption

- 1040 lbm NTO
- 840 lbm N2H4

□ 3925-F maximum sustained chamber temperature

• Max of 4025-F for transient

□ 288.8-psia maximum chamber pressure

□ 99.1 psia minimum chamber pressure

Low thrust limit for chugging

□ 333.5 seconds maximum specific impulse (stable on)

(stable op.)

- O/F = 1.1 & F = 151.1-lbf
- O/F = 1.06 & F = 158.6-lbf

Pre Hot-Fire

AMBR Engine Temperature During Performance Test

IN-SPACE PROPULSION

AMBR Engine Vibration Test

Setting up AMBR Engine for Vibration Test at Aerojet, Redmond

PROPULSION

AMBR Engine Vibration Test Parameters

AMBR Engine Shock Testing at JPL

Shock Testing in X direction

In-Space Propulsion Technology (ISPT)

Shock Testing in Y and Z direction

AMBR Engine Shock Test Parameters

- Completed vibration test
 on 01/22/2009
 - · No anomaly observed
 - Data analysis and hardware inspection are underway
 - Used the Shock Response Spectrum (SRS) adapted from JUNO mission

AMBR engine mounted on the adapter and fixture plate

In-Space Propulsion Technology (ISPT)

Two shock pulses per axis

10,000

1000

Simulated Pyroshock Requirement

AMBR Points of Contact at Aerojet:

AMBR Program Manager: Kimberly Wilson, 425-885-4510, <u>kim.wilson@rocket.com</u>

AMBR Project Manager: Scott Henderson, (425) 869-4560, <u>scott.henderson@rocket.com</u>