

NEXT Thrusters & Power Processing Units

Scott W. Benson, NASA Glenn Research Center Discovery Technology Day April 9, 2014

NEXT GFE Project Approach

- PSD considering providing 2 NEXT thrusters and 2 NEXT Power Processing Units (PPU) as GFE to Discovery
- NASA GRC is formulating a possible procurement to complete development of the PPU to TRL6 and to provide PPU and thruster flight hardware
 - Industry Day held in December with substantial industry attendance
 - RFI issued with multiple positive responses received
- As described in RFI, NASA GRC is pursuing a cost-shared development that results in dual-use of the NEXT thruster and PPU technologies
- If a mission using NEXT is not selected, GFE hardware would be preserved for future PSD mission use

NEXT Thruster Characteristics

Performance Characteristics		
Thruster Power Range, kW	0.5-6.9	
Max. Specific Impulse, sec	4190	
Thrust, mN	26-236	
Max. Thruster Efficiency	71%	
Max. Beam Current, A	3.52	
Max. Beam Voltage, V	1800	
Mass (with harness), kg	13.5	

- Thruster characteristics and capabilities established with high-fidelity Prototype Model (PM) unit
- Extended Throttle Levels test-demonstrated and in definition
 - Provides higher thrust-topower capability

PM1 Thruster

- Lifetime Capability
- Thruster long duration test voluntarily terminated in March 2014, fully functional over throttling range
 - 918 kg demonstrated xenon throughput
 - 51,184 hr of operation
 - 35.5 MN-sec total impulse
- >600 kg throughput capability after applying 1.5x qualification factor
- Thruster lifetime margin for missions using > 400 kg throughput should be determined through analysis of a specific mission throttle profile

NEXT PPU Characteristics

- PPU GFE procurement allows for further development of existing design or new path based on demonstrated design
- Characteristics of existing design shown
 - Planning values for consideration only

Performance Characteristics

	Existing	Planning
Input Power Range, W	630 - 7240	700 - 7375
Peak Efficiency	95%	93%
Conducted Waste Heat, W _T	75 - 340	160 - 520
Primary Power Input Voltage, V	82 - 160	TBD
Housekeeping Input Bus, V	28	28
Housekeeping Power, W	16 - 28	16 - 33
Mass, kg	33.9	+20% MGA
Power Output to Single Thruster		

NEXT Implementation

- NEXT-based ion propulsion system (IPS) for Discovery
 - Thruster & PPU GFE
 - IPS architecture to be defined by mission
 - Xenon Feed System, Gimbal and Control Interface to be provided within PI-cost
- NEXT technology project also developed;
 - Xenon feed system TRL 6
 - Gimbal TRL 5
 - DCIU simulator

LPA – Low Pressure Assembly

Gimbal– ATK

HPA/LPA – Aerojet-Rocketdyne

TRL Status

- Four independent TRL assessments of NEXT technology
- □ Thruster: TRL 6 (3 of 4)
 - Prototype Model unit
 - Performance and Functional demonstration, alone and in IPS
 - Thermal characterization and qual-level thermal-vac testing
 - Qual-level vibration testing on NEXT gimbal
 - Lifetime demonstration by test and modeling
- PPU: TRL 4 (3 of 4)
 - Engineering Model unit
 - Performance and Functional demonstration, alone and in IPS
 - Operations in ambient and vacuum across a range of allowable flight temperatures
 - Component failures prevented completion of qual-level environmental testing

Development Schedule

- GFE hardware procurement preparations in progress
- □ Target schedule:
 - Contract award: October 2014
 - Development phase complete: September 2016 (prior to target date for mission selection)
 - PPU at TRL 6
 - Any design updates to thruster formalized
 - Flight hardware delivery by June 2018
 - PPU and thruster hardware deliveries not necessarily tied together

AO Library Content

- Anticipated AO Library Content
 - Detailed thruster characteristics
 - Baseline throttle table
 - Extended throttle table and supporting information
 - Detailed PPU characteristics (existing design)
 - PPU development planning (to be updated as procurement is formalized)
 - Thruster and PPU requirements
 - Thruster and PPU interface definition
 - Control functionality guidance

Contact Information

GRC Project Manager:

Scott W. Benson/GRC, 216-977-7085, <u>Scott.W.Benson@nasa.gov</u>

Hall Propulsion System Power Processing Unit Briefing for Discovery AO Technology Day April 9, 2014

NASA Glenn Research Center Luis Pinero & Hani Kamhawi Colorado Power Electronics Inc. Geoff Drummond and Vlad Shilo

www.nasa.gov

- PSD's In-Space Propulsion Technology (ISPT) Program has been working with a promising SBIR project to develop a low-cost 4.5-kW class wide output range Hall Power Processing Unit (PPU) for Discovery-class planetary missions.
 - Colorado Power Electronics (CPE) has successfully developed a PPU and is poised to take the design to flight certification (TRL 6+) by September 2016.
 - QM PPU will incorporate control electronics for the PPU power modules, VACCO TRL 7 xenon feed system, and thruster/PPU telemetry.
 - CPE has submitted a cost proposal and NASA programs have committed funding to start the effort by next month.
- Designed to operate several Hall thrusters:
 - NASA's High Voltage Hall Accelerator (HIVHAC), Aerojet-Rocketdyne XR-5 (BPT-4000), Space Systems Loral SPT-140.
 - Thruster acquisition and Hall propulsion system development to be addressed by mission proposal teams.

GRC Point of Contact Hani Kamhawi Hani.Kamhawi-1@nasa.gov 216-977-7435

Schedule a 1-on-1 session or contact GRC POC for more info.

