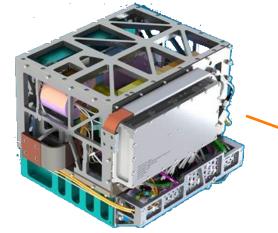


Discovery 2014 Briefing to Potential Proposers Capabilities and Considerations for Incorporation Onto a Discovery-Class Mission

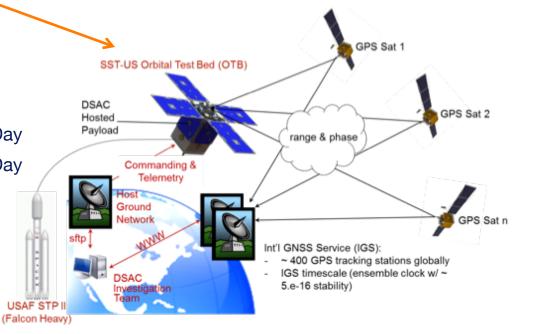
> Allen H. Farrington DSAC Project Manager April 2014


This document has been reviewed for export control and it does NOT contain controlled technical data. This document has NOT been cleared for public release.

www.jpl.nasa.gov

Deep Space Atomic Clock Project

DSAC is a Flight Mission – Demonstrate Clock on Orbit (TRL7)



- Develop Advanced Prototype Clock for Year-Long Test Flight
- Demonstrate State of the Art Clock Stability (see below)
- Develop and Demonstrate Deep Space Navigation Tools and Usage of Clock in a One-Way Tracking Scenario

Requirements:

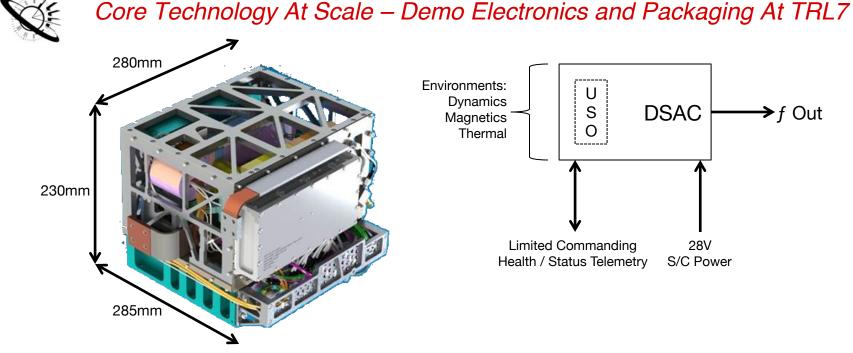
Clock prior to launch: On-orbit Clock Validation: 3.0 E-15 @ 1Day 2.0 E-14 @ 1Day

Current CBE predicts that DSAC in-space will actually meet ground based performance (A.D. < 3.0 E-15 @ 1 day) which outperforms any existing space clock.

For More Information, Contact: <u>Allen.H.Farrington@ipl.nasa.gov</u>, Website: <u>http://www.nasa.gov/mission_pages/tdm/clock/</u>

Deep Space Atomic Clock Project

Implementation Uses



Deep Space Navigation	Science	Deep Space Timing	Autonomy	Near Space Navigation/Timing
NASA IND/DSN NASA SMD/PSD	NASA SMD/PSD	NASA IND/DSN NASA SMD/PSD	NASA SMD/PSD	USAF – SMC/GPS USAF – MILSATCOM NRO
 Multiple Spacecraft Per Aperture at Mars doubles useful tracking Full use of Ka-band tracking – OD uncertainty at Mars < 1 m (10 x improvement) Outer planets users gain significant tracking efficiency – 15% at Jupiter 25% at Saturn 	 Enhance gravity science at Mars, GRACE-level determination of long term gravity with one satellite, at Europa, flyby gravity objectives met robustly Enhance planetary occultation science with 10 x better data 	 overhead Improve reliability of critical time- dependent 	 Enables autonomous radio navigation (robotic and crewed) Enhances EDL and precision landing Key component to autonomous aerobraking Coupled with OpNav, enhances primitive body exploration 	 Diversifies clock industrial base - enhancing national security Provides needed time accuracy/ stability for next generation secure communications Significant aid to users with compromised GPS visibility – need only 3 in-view to position

For More Information, Contact: <u>Allen.H.Farrington@ipl.nasa.gov</u>, Website: <u>http://www.nasa.gov/mission_pages/tdm/clock/</u>

Deep Space Atomic Clock Project

DSAC is a small, low-mass mercury-ion clock suitable for deep space flight with limited interfaces

Depending on intended use, environments, etc...two options for implementation exist: Option 1 (DSAC "As-Is"): SWaP (17kg, 56W w/USO), GEVS Dynamics Option 2 (DSAC Reduced): Re-package Electronics to reduce SWaP to 10kg, 30W

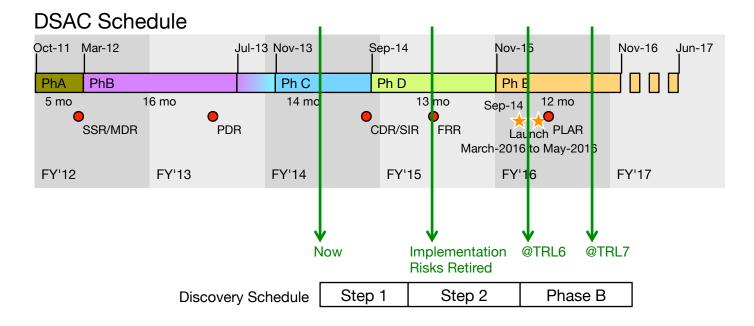
For both options, analysis of environments and lifetime would be required For both options, analysis of short-term (USO-based) stability is required

For More Information, Contact: <u>Allen.H.Farrington@ipl.nasa.gov</u>, Website: <u>http://www.nasa.gov/mission_pages/tdm/clock/</u>

Deep Space Atomic Clock Project

TRL 7 Definition for DSAC

	TRL 7 defined for the Deep Space Atomic Clock TDM
Capability	Demonstrated capabilities against formal requirements.
performance against need	Assessment of demonstrated capabilities against future mission needs.
SWaP	Physics package at SWaP on track for future mission needs.
Volume, Mass, Power	Support Electronics and packaging to meet demonstration flight needs only.
Model Fidelity	Advanced Prototype. Physics Package in the near-final configuration.
What is flown?	Support Electronics suitable for demonstration mission only.
Critical Engineering	Designed with flight rules and guidelines. Materials and Process controls.
How much NRE Remains?	Mostly flight parts, some with flight potential (fly lower screening grade).
Environments	Testing to demonstration mission requirements only. Assessment against future mission needs as can be defined.
Reliability	Focus on design margins verification and lifetime.
Lifetime, Parts, Analyses, QA	Lifetime assessment against 15 year goal.
Validation	Verified against formal requirements for the demonstration mission only.
How are the LI Requirements Verified?	Formal assessment against future mission needs that can be identified.


For More Information, Contact: Allen.H.Farrington@ipl.nasa.gov, Website: http://www.nasa.gov/mission_pages/tdm/clock/

Deep Space Atomic Clock Project

Schedule Alignment with Discovery

DSAC is phased in advance of Discovery Needs Offering low implementation risk.

For More Information, Contact: Allen.H.Farrington@ipl.nasa.gov, Website: http://www.nasa.gov/mission_pages/tdm/clock/

Deep Space Atomic Clock Project

AO Information Package Contents: Identical to Electra Contents

DSAC Content	Detail		
General Information			
Description of arrangement with NASA	Agreement Letter		
Points of Contact	Project & Technical		
Payload Description			
Description of technology development	Based on DSAC Infusion report		
List of advantages offered	Based on DSAC Infusion Status Briefings		
High-level description of components	No ITAR-restricted Data		
General explanation of operating principles	Yes		
Image of payload	Current DSAC Configuration		
Simple block diagram of payload	Yes, Including Interfaces		
Table of key specifications	Yes (CBE)		
Table of payload-spacecraft bus interfaces	Yes (ICD)		
Description of sensitivities/considerations	Yes		

For More Information, Contact: <u>Allen.H.Farrington@ipl.nasa.gov</u>, Website: <u>http://www.nasa.gov/mission_pages/tdm/clock/</u>

Deep Space Atomic Clock Project

ROM Accommodation Cost

- To a S/C, DSAC is a simple, Power-In, Reference Frequency Out Device
 - Limited Commanding or Health and Status Telemetry Monitoring
- Based on Similar Devices (USO's)
 - The Accommodation Cost is would be based on these considerations:
 - Systems Engineering
 - Selection of USO Characteristics Base Frequency & Short-term Stability
 - Integration with Telecom System
 - Fault Protection Considerations (if tied to Telecom System)
 - Thermal / Magnetic Environments for optimum performance (if necessary)
 - Only required for the highest performance (E-15 level AD) cases
 - System-level Integration & Test

Deep Space Atomic Clock Project

Points of Contact

- For Program/Project and Implementation Items
 - Allen H. Farrington DSAC Project Manager, <u>Allen.H.Farrington@jpl.nasa.gov</u>, 818-653-2284
- For DSAC Capabilities, Navigation and Scientific Uses
 - Jill Seubert, <u>Jill.Tombasco@jpl.nasa.gov</u>, 818-354-4076
- Jill and Allen are the "entry point" into working more closely with the DSAC/JPL team.
 - Jill and Allen work non-exclusively with all teams while protecting their information from being passed to any other proposal team.
 - The DSAC team and associated SME's are a small group
 - The SME's will work for all proposals briefed on how to prevent COI and how to compartmentalize information about one proposal versus another
 - DSAC Project-Generated Technology and Advancements available to all proposals
 - DSAC is continuing to make progress and advancements and will feed that to all proposers working with us during Steps 1 and 2

For More Information, Contact: <u>Allen,H.Farrington@ipl,nasa.gov</u>, Website: <u>http://www.nasa.gov/mission_pages/tdm/clock/</u>