

The Community Announcement Language on EDL Instrumentation

"Discovery Program investigations involving entry, descent, and landing (EDL) into the atmosphere of a Solar System object (including the Earth) shall include an Engineering Science Activity (ESA), to be funded outside of the cost cap, to obtain diagnostic and technical data about vehicle performance and entry environments. Details of the goals and objectives of this activity will be posted on the Discovery Program Acquisition Website (discovery.larc.nasa.gov) in the Program Library."

Entry, Descent and Landing (EDL) Instrumentation

Goal

- To advance knowledge and improve future entry system designs:
 NASA desires to collect engineering performance data from planetary entry probes (Earth return capsules, other planets)
- Past experience tells us that we must ask this question of proposers <u>up front</u> to minimize cost and risk of accommodation

Approach

- Goals and Objectives document will be provided—what we want you to measure, not how to measure it
- It is recognized that these are small vehicles: potentially low mass, power, volume, and data availability; not Flagship-class
- Want proposers to concentrate on "bang-for-the-buck" and minimize any negative impacts to science
- The funding for implementation will be provided outside the cost cap
- NASA will provide experts for consultation

Benefits of Instrumenting Entry Systems

- Advance the state of knowledge about these vehicles and their environments
 - Provide feedback on system performance, rather than "pass/fail"
 - Provide forensics
 - Inform future risk postures and margin practices
 - Guide technology investments to support future missions
- Save time and money, on following missions
 - Show where the system does or does not need improvement (especially useful for build-to-print)
 - Allow project to tailor testing for resource savings
- Improve mass fraction and increase science return
 - Targeted margins may save 10's to 100's of kg on the spacecraft
 - Greater knowledge -> Improved systems -> Smaller launch vehicles or more payload delivered

EDL Instrumentation "State-of-the-Art": MEDLI

- MEDLI consisted of 7 pressure ports, 7 integrated sensor plugs, with support electronics
- Gathered engineering data during entry and descent for future Mars missions:
 - Aerothermal, aerodynamic, and thermal protection system performance

Atmospheric density and winds

Sensor Support Electronics (custom)

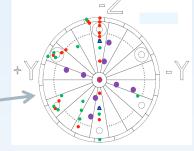
Mars Entry Atmospheric Data System (MEADS)

The MEDLI instrumentation made MSL the first extensively instrumented heatshield ever sent to Mars

FLAGSHIP-class

Photo Credit: NASA/JPL-Caltech/MSSS

MEDLI measurements


Successfully completed August 6, 2012

EDL Instrumentation SOA 2: EFT-1 Heat Shield

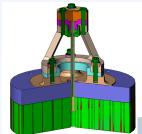
Orion Crew Capsule

- 19 In-Depth TC Thermal Plugs
- 15 Surface TC Thermal Plugs
- 2 Radiometers
- 9 Pressure Ports

Objectives:

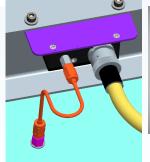
- Deliver flight hardware to measure heat shield response during EFT-1 reentry.
- Data required to validate multiple Flight Test Objectives supporting: human rating, aerodynamic database, heat shield performance

Program:


- Teaming: JSC Crew Service Module Office overall lead
- ARC PM Lead, thermal plugs, radiometer, systems engineering
- LaRC Pressure system design & certification
- JPL Systems engineering & mechanical design
- PM: Ed.Martinez@NASA.gov

Instrumented Thermal Plugs

Avcoat TC plugs were flown during the Apollo program


Pressure Measurement & Radiometers

Pressure Honeywell PPT

Flight: Fall, 2014

Technical Objectives from the G&O Document

Technical Objectives	Measurement	Accuracy
Thermal Protection		
Reduced TPS and vehicle mass, reduce sub-system risk for future missions	In-Depth Temperatures, as a function	
	of time at multiple locations	±1%
	Recession in Flight (multiple	
	locations)	1 mm
	Final Recession (if recovered)	1 mm
	Heat Flux	5%
Demonstrate adequate bonding and bondline integrity	TPS-to-structure bondline	
	visualization (before and after flight)	±X mm
Atmosphere, Aerodynamics, and Flight Dynamics		
Reconstruct EDL including in-situ winds a dan periodensity. Increase landing accuracy.	rime Dependent Mass Propserties	
	(fuel burn, etc.)	
Determine vehicle attitude	Roll, pitch, and yaw	±Χ°
Atmospheric Decelerator		
Enhance system capability (heavier payloads, higher altitudes, etc.), reduce mass, increase reliability and performance for future missions	Deployment angle	±X%
	Deflections/Area oscillations	
	Inflation Pressure & Loads	
	Total drag, as a function of time	
Vehicle Structure		
Reduce mass, increase reliability and performance for	Entry Loads	±X%
future missions	Landing Loads	

Planned AO Library Content

- Goals and Objectives Document: Outline
 - Background and Motivation
 - Goals of the Engineering Science Activity
 - Technical Objectives of the Engineering Science Activity (table, next pg)
 - Data not considered part of the Engineering Science Activity
 - Examples of Implementation
 - TRL Requirements of Data Collection Methods
 - Prioritization of Technical Objectives
 - Data Transfer and Archiving
 - Proposal Requirements for Describing the Engineering Science Activity
- Other documents
 - MEDLI hardware description AIAA paper
 - MISP (thermal plug) and MEADS (pressure port) relevant papers
 - Other documents that may describe the SOA or novel approaches for achieving some of the objectives

Point of Contact

- Michelle Munk, Langley Research Center
 - Michelle.M.Munk@nasa.gov
 - 757-864-2314 (office)
 - 757-876-7761 (cell)

