

UNIVERSITY of MICHIGAN . COLLEGE of ENGINEERING

MAHRS: A Simple Instrument Suite to Characterize the Weathering and Habitability of the Shallow Martian Subsurface

University of Michigan and Glenn Research Center

Discovery Workshop April 9, 2014

MICHIGAN ENGINEERING

IVERSITY of MICHIGAN . COLLEGE of ENGINEERING

Understand the processes that determine the history and future of habitability in the solar system.

Identify and investigate past or present habitable environments on Mars and other worlds.

Search for modern habitats with the necessary conditions, organic matter, water, energy, and nutrients to sustain life.

Make comprehensive measurements of the atmosphere and surface of Mars.

Inventory and characterize planetary resources that can sustain human explorers.

Search for wet brines in the shallow subsurface.

Determine the effects of regolith wetness on saltation and on the exchange of dust between the surface and the atmosphere.

Characterize aeolian processes and the exchange of material between the surface and the atmosphere.

Determine the effects of dust aerosols on the local climate.

MAHRS Instrument Suite Overview

🕂 Michigan Engineering

UNIVERSITY of MICHIGAN . COLLEGE of ENGINEERING

DESCRIPTION:

• The MAHRS Project has been maturing a set of instruments for detecting potentially habitable zones in shallow planetary subsurfaces, and for studying the exchange of matter between planetary atmospheres and shallow subsurfaces.

VALUE TO NASA:

- MAHRS responds to the top priorities of the 2013–2022 Decadal Survey and the 2007–2016 Science Plan for NASA's Science Mission Directorate.
- Instruments are being optimized by minimizing mass, volume, and power consumption while meeting the science requirements described in the MAHRS traceability matrix.
- Leverages instrument development funded by NSF Geo, NSF SBIR, NASA PIDDP, NASA ASTID, NASA Mars Exploration Program, The University of Michigan, and the State of Michigan.

OBJECTIVES:

- To refine the Electric Field Sensor (EFS) design by minimizing mass, volume, and power consumption.
- To integrate the EFS, Optical Microscope (OM), Radiometer (RAD), Saltation Sensor (SALT), and soil Wetness sensor (WET) instruments into a single instrument package optimized for accommodation onto future planetary missions.

Nilton O. Renno (University of Michigan), PI; Michael J. Krasowski (GRC), Co-I; George E. Ponchak (GRC), Co-I; Norman F. Prokop (GRC), Co-I; Joseph M. Flatico (Ohio Aerospace Institute), Co-I

Entry TRL: 3-5 Exit TRL: 6

MAHRS Quad Chart

MICHIGAN ENGINEERING

UNIVERSITY of MICHIGAN . COLLEGE of ENGINEERING

DESCRIPTION: The MAHRS Project matures a set of instruments for detecting potentially habitable zones in shallow planetary subsurfaces, and study the exchange of matter between planetary atmospheres and shallow subsurfaces.

OBJECTIVES:

- To refine the Electric Field Sensor (EFS) design by minimizing mass, volume, and power consumption.
- To integrate the EFS, Optical Microscope (OM), Radiometer (RAD), Saltation Sensor (SALT), and soil WETness sensor (WET) instruments into a single instrument package optimized for accommodation onto future planetary missions.

Q1-2 ACCOMPLISHMENTS:

Made progress on preparations for the subsystem PDR.

- EFS: Designed and fabricated a prototype sensor capable of operating for years on Mars-like dusty conditions.
 - Tested the EFS prototype in the laboratory and deployed to the field.
- SALT: Characterized waveform and have been developing measurement strategy.
- WET: Performed numerical simulations to optimize the ring resonator. Fabricated and tested various candidates resonators.
 - Developed method for measuring soil wetness. Currently characterizing the selected resonators.
 - Detection depth is being studied, meeting the initial requirements of 10 cm is more challenging than anticipated.
- **RAD**: Will share the electronics with OM.
 - Development focused on optical assembly and FPGA design, initial tests indicated that requirements are met.
- OM: Designed the microscope based on a STAR1000 radiation hard CMOS image sensor and a Microsemi ProASIC3 FPGA development board (FPGA-DB).

Nilton O. Renno (University of Michigan), PI; Michael J. Krasowski (GRC), Co-I; George E. Ponchak (GRC), Co-I; Norman F. Prokop (GRC), Co-I; Joseph M. Flatico (Ohio Aerospace Institute), Co-I

Entry TRL: 3-5 Exit TRL: 6

Electric Field Sensor (EFS)

MICHIGAN ENGINEERING

UNIVERSITY of MICHIGAN . COLLEGE of ENGINEERING

DESCRIPTION: The MAHRS Electric Field Sensor is unique because it is capable of making accurate measurements of electric fields even when subject to the impact of charged particles. This set the patent protected EFS apart from other technologies such as electrometers.

OBJECTIVES:

- To mature the flight qualifyable EFS prototype into a sensor capable of operating for years in Mars-like dusty environments.
- To test the prototype at the field.

Original EFS Prototype

New EFS Prototype

Q1-2 ACCOMPLISHMENTS:

Developed a cantilever version of EFS capable of operating for years in dusty environments.

- The prototype sensor was tested successfully in the laboratory.
- The sensor was deployed to the field on 14 January 2014.
- The sensor has been operating continuously (even during winds of 70 mph on March 2014).

Nilton O. Renno (University of Michigan), PI; Michael J. Krasowski (GRC), Co-I; George E. Ponchak (GRC), Co-I; Norman F. Prokop (GRC), Co-I; Joseph M. Flatico (Ohio Aerospace Institute), Co-I

EFS Entry TRL: 5 EFS Exit TRL: 6

EFS Block Diagram

MICHIGAN ENGINEERING

FFT Coefficients (Quadrature)

 ω_R = Rotating Frequency = 20 Hz (1200 rpm) f = E-Field Frequency = DC & 8 Hz

Characteristics of v2

Parameter	Value	Remarks
RPM	2400	Avoid 1500/1800 RPM (50/60 Hz)
Rotations per FFT	307	
Samples per FFT	16384	A power of 2 number
Number of bits of digitizer	15.5	
Rotation rate (Hz)	40	
Sample rate (Hz)	2134.7	
Spectral resolution (Hz)	0.13	Freq. width of FFT coefficients
RMS noise (dB)	95.1	
FFT noise (dB)	134.2	Measured values are 10 dB larger
LP filter noise (-60dB/dec)	162.5	Fc should be smaller than this value for attenuation
		at Fs to be 10 dB above FFT noise floor
Sensor length (m)	0.16	
Sensor diameter (m)	0.037	
Transductance gain (Ohms)	7.5E+06	
Vmax for ADC (V/m)	3	
Max e-field (V/m)	7591	Without gains
FFT noise floor (V/m)	0.0030	
OpAmp filter RMS noise (V)	1.15E-04	
OpAmp noise floor (V/m)	0.5820	Of each reading
Combined noise floor (V/m)	0.0054	Reduced by increasing the # samples per FFT

Two Flights in a Stratospheric Balloon

MICHIGAN ENGINEERING

UNIVERSITY of MICHIGAN . COLLEGE of ENGINEERING

Original v2 EFS

This version of the sensor is capable of measuring electric fields from 0.1 to 75,000 V/m, with frequencies ranging from true DC to a few 100 Hz.

EFS Test Prior to Field Deployment

Michigan Engineering

EFS Test in Dusty Conditions

Michigan Engineering

Telemetry Snap Shot

MICHIGAN ENGINEERING

VERSITY of MICHIGAN
COLLEGE of ENGINEERING

	x

1/30/2014 12:11:32.030: Starting up								
1/30/2014 12:11:32.030: Starting up 1/30/2014 12:11:32.045: Connected to remote system			CR3000 1 Hz	Value	Units	CR3000 0.1 Hz	Value	Units
			Date	2014-01-30	UTC	Date	2014-01-30	UTC
			Time	17:25:28	UTC	Time	17:25:30	UTC
			Rel. Humidity	49.25	%	Vol. Water Content	0.85	Kg/m^3
			Temp, Air	13.55	С	Rel. Humidity, Encl.	54.61	%
			Particle Count	0		Temp, Enclosure	19.34	C
			Kinetic Energy	0		Temp, Soil	-5.324	C
			Solar Irradiance	NAN	W/m^2			
			Aerosol Conc.	0.029	kg/m^3	CR1000 1 Hz	Value	Units
			Solar Irr., Direct	286.8	W/m^2	Date	2014-01-30	UTC
			Long Wave Rad., Above	-60.38	W/m^2	Time	17:25:33	UTC
			Solar Irr., Reflected	117.2	W/m^2	Wind Speed 1	5	m/s
			Long Wave Rad, Below	-4.027	W/m^2	Wind Speed 2	5.45	m/s
			Temp, Net Radiometer	13.96	С	Wind Speed 3	5.45	m/s
Ÿ			Air Pressure	882.5447	hPa	Wind Speed 4	6.2	m/s
Freeze Msgs Unfreeze Msgs Connected		Temp, Rad. Tripod	13.51	С			11.5	
			Abbrev. Time Stamp	28.30	secs.msecs	Housekeeping	Value	Units
Electric Field Sensor 1 Sensor	2 Sensor 3	Sensor 4	Wind Speed, X	-3.73475	m/s	Latched Overcurrent	off	
Magnitude, V/m 95 1	6 81	103	Wind Speed, Y	7.55725	m/s	Shutdown Request	off	
Direction, deg 164 1	1 161	144	Wind Speed, Z	-0.243	m/s	Vinput	11.800	V
Motor Speed, RPM 1000 10	0 1000	998	Temp, Fine Wire	339.222	С	linput	0.000	A
Error Code 0	0 0	0	Diagnostic Code	36		Time sync age	4011	S
Motor Position 17	2 6	14	-			Time error	-2	msec
Fixed Batt V 3.27 3.	2 3.21	3.24	Prandtl Probe	Value	Units	Recording data	yes	
Rotating Batt V 3.30 3.	4 3.26	3.25	Wind Direction	331	deg from N			
Seconds 1391102732 13911027	2 1391102732	1391102732	Static (ADC 0)	882.619	hPa			
Milliseconds 985 5	5 626	445	Stagnation (ADC 1)	882.801	hPa			

Camera 1 at 2014-01-30 17:23:38

Camera 2 at 2014-01-30 17:23:40

Camera 3 at 2014-01-30 17:23:41

E-Fields & Dusty Events

(Renno et al. 2010)

Soil Wetness Sensor (WET)

MICHIGAN ENGINEERING

UNIVERSITY of MICHIGAN . COLLEGE of ENGINEERING

DESCRIPTION: The MAHRS soil wetness sensor is capable of measuring soil wetness without the need of inserting the sensor into the soil.

OBJECTIVES:

- To develop the WET sensor technique and test it in the laboratory. To integrate the various subsystems into a brassboard model, instead of using rack-mounted laboratory equipment.
- To test the brassboard prototype sensor.

Candidate Ring Resonator

Q1-2 ACCOMPLISHMENTS:

Conducted numerical simulations and tested various candidate microstrip ring resonators in the laboratory.

- Conceptualized a technique for detecting liquid brines unambiguously using the differences in permittivity between liquid water and water ice or regolith at two frequencies.
- Testing the technique for detecting liquid brines unambiguously.
- Testing the capability of detecting liquid brines more 1 cm below the surface.

Nilton O. Renno (University of Michigan), PI; Michael J. Krasowski (GRC), Co-I; George E. Ponchak (GRC), Co-I; Norman F. Prokop (GRC), Co-I; Joseph M. Flatico (Ohio Aerospace Institute), Co-I

WET Entry TRL: 4 WET Exit TRL: 6

Permittivity of Ice and Water: $Re(\varepsilon)$

MICHIGAN ENGINEERING

Permittivity of Ice and Water: $Im(\varepsilon)$

UNIVERSITY of MICHIGAN . COLLEGE of ENGINEERING

 $S_{11} \approx f(\epsilon', d)$ Reflected signal

 $S_{21} = f(\epsilon', \epsilon'', d)$ Transmitted signal

where *d* is the depth (thickness) of the layer of permittivity $\varepsilon = \varepsilon' + i \varepsilon''$

WET Development

- UNIVERSITY of MICHIGAN . COLLEGE of ENGINEERING
- Determining best resonators for measuring soil bulk ice and liquid water content of soils (frequency range 0.5-20 GHz).
- Currently studying the performance of various types of resonators.
- A dual frequency probe operating is necessary to meet the requirements.

Radiometer (RAD) and Optical Microscope (OM)

MICHIGAN ENGINEERING

UNIVERSITY of MICHIGAN . COLLEGE of ENGINEERING

DESCRIPTION: The MAHRS Radiometer (RAD) and Optical Microscopes (OM) are leverage on the Mars Array Technology Experiment (MATE) developed for the Mars 2001 Lander.

OBJECTIVES:

- To fabricate the RAD/OM assembly and connect it into a host processor via serial link.
- To study the idea of using three set of sensor assemblies on the MAHRS instrument suite, one to look upward to measure solar radiation and measure dust particles deposited into the optical window, one downward to image particles on the surface and measure solar radiation reflected by it, and another to look at the horizon.

Q1-2 ACCOMPLISHMENTS:

Designed and tested the instrument optical assembly and electronics.

- Designed the microscope based on a STAR1000 radiation hard CMOS image sensor and a Microsemi ProASIC3 FPGA development board (FPGA-DB).
- Currently testing the FPGA memory interface.

Nilton O. Renno (University of Michigan), PI; Michael J. Krasowski (GRC), Co-I; George E. Ponchak (GRC), Co-I; Norman F. Prokop (GRC), Co-I; Joseph M. Flatico (Ohio Aerospace Institute), Co-I

Star1000 Development Board

Michigan Engineering

OM: STAR1000 Image

MICHIGAN ENGINEERING

Project Summary

- The U–M group has been refining the EFS and building prototypes in collaboration with GRC. EFS prototypes are being characterized in the field and in the Michigan Mars Environmental Chamber (MMEC) at temperatures as low as 140 K and under a CO₂ atmosphere at about 700 Pa.
- WET is being developed jointly by GRC and U–M. Two prototype WET sensors will be fabricated and characterized at the MMEC, also to temperatures of about 140 K and a pressure of about 700 Pa.
- **OM, RAD, and SALT prototypes will be fabricated at GRC** and delivered to U–M for characterization in the MMEC, also to temperatures of about 140 K and 700 Pa.
- EFS, OM, RAD, SALT, and WET instruments will be integrated into two single MAHRS prototype systems at U–M. These single systems will be connected with a Unix-based CDH simulator. An integrated system will be tested at Mars conditions in the MMEC.
- A MAHRS instrument suite prototype will be deployed to our field site at the Owens Dry Lake for tests under dusty atmospheric conditions. A second prototype will be tested in the Atacama Desert and the McMurdo Dry Valleys.

MAHRS

MICHIGAN ENGINEERING

UNIVERSITY of MICHIGAN . COLLEGE of ENGINEERING

THANKS!